Influence of hyperbaric pressures on salbutamol metered dose inhaler performances

M. Mattiuzzo1, O. François1, C. Combescure2, P. Bonnabry1,3, C. Fonzo-Christe1, R. Pignel4
1Pharmacy, Geneva University Hospitals (HUG), 2Division of clinical epidemiology HUG, 3School of pharmaceutical sciences (Geneva), 4Hyperbaric medicine, Emergency department, HUG

Authors report no conflict of interest

Background

- Hyperbaric oxygenotherapy (HBOT) is used for various clinical conditions. Elective patients may have comorbidities like asthma; a crisis occurring during HBOT session would need to be treated inside the hyperbaric chamber.
- Salbutamol metered dose inhalers (MDIs) may deliver a lower quantity of aerosol under hyperbaric pressures[1].

Objective

Evaluate the performances of two salbutamol MDIs on the Swiss market: Ventolin® aerosol-nebuliser (GSK) and Salamol® Autohaler (Teva Pharma) inside an HAUX-STARMED 2400 hyperbaric chamber.

Methods

- Each device was weighted before and after 15 actuations into the hyperbaric chamber.
- Conditions of experiment: the filling of the canister (full, half-empty or near-empty) and pressure in the chamber (1.0, 2.5 and 4.0 ATA; 1 ATA = 760 mmHg).
- Tests were performed in triplicate for each condition (statistical test: Kruskall-Wallis).

Results

Quantity of aerosol delivered within 15 actuations for both devices toward the pressure with full, half-empty and near-empty canister.

<table>
<thead>
<tr>
<th>Absolute pressure (ATA)</th>
<th>VENTOLIN</th>
<th>SALAMOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>near empty</td>
<td>1083.2 (10.4)</td>
<td>542.7 (30.7)</td>
</tr>
<tr>
<td>half empty</td>
<td>1082.5 (2.7)</td>
<td>515.8 (19.6)</td>
</tr>
<tr>
<td>full</td>
<td>1073.7 (30.0)</td>
<td>492.5 (19.6)</td>
</tr>
</tbody>
</table>

| p-value | 0.03 | 0.03 | 0.07 |

Quantity of aerosol delivered within 15 actuations in mg (SD)

Ventolin®: delivered quantity of aerosol significantly lower as pressure increased to 2.5 and 4.0 ATA.
Salamol®: delivered quantity of aerosol not significantly influenced by pressure increase.
Differences observed for the filling conditions at a given pressure were not significant for both MDIs.

Conclusion

Increased pressure reduced by 20% the quantity of aerosol delivered by Ventolin at 4.0 ATA. The reasons for the differences observed between the two devices might be explained by the triggering mechanism. Clinical consequences of these observations on the management of an asthma crisis under hyperbaric pressures are unknown and should be investigated. Performances of devices in hypobaric conditions should also be investigated.